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The objective of this paper is to present exact analytical solutions for the longitudinal
vibration of rods with non-uniform cross-section. Using appropriate transformations, the
equation of motion of axial vibration of a rod with varying cross-section is reduced to
analytically solvable standard differential equations whose form depends upon the specific
area variation. Solutions are obtained for a rod with a polynomial area variation and for
a sinusoidal rod. The solutions are obtained in terms of special functions such as Bessel
and Neumann as well as trignometric functions. Simple formulas to predict the natural
frequencies of non-uniform rods with various end conditions are presented. The natural
frequencies of non-uniform rods for these end conditions are calculated, and their
dependence on taper is discussed. The governing equation for the problem is the same as
that of wave propagation through ducts with non-uniform cross-sections. Therefore
solutions presented here can be used to investigate such problems.
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1. INTRODUCTION

The vibration of non-uniform beams and rods is a subject of considerable scientific and
practical interest that has been studied extensively. A plethora of literature in this field
exists and a comprehensive bibliographical account of previous works in this area will not
be attempted here. The study of longitudinal vibration of non-uniform rods is important
in the study of composite structures subjected to high velocity impact [1] and the study
of foundations [2–4]. A study of vibration of tapered rods was undertaken by Eisenberger
[5] who showed that the natural frequencies were only affected slightly by the taper. It was
shown that the equation of motion of rods with conical cross-sections could be reduced
to the form of a wave equation by a change of variable [6]. In a recent study, using a
systematic approach, Abrate [7] seeks all the possible area variations for which exact
solutions for the problem can be obtained. He obtained closed form solution for rods
whose cross-section varies as A(x)=A0(1+ a[x/L])2. Exact analytical solutions also exist
for exponential and catenoidal rods [8].

In the absence of exact solutions, the problem can be solved using approximate or
numerical methods. While these approximate or numerical methods yield accurate
answers, they often may not provide adequate insight into the physics of the problem.
Moreover, since they cannot be implemented without the availability of a computer, it is
often difficult to incorporate these solution approaches into practical design procedures.
Therefore it is desirable, though often difficult to obtain exact solution to such problems.
The availability of exact solutions will help in establishing the accuracy of the approximate
or numerical solutions.
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The objective of this paper is to present exact analytical solutions for the longitudinal
vibration of rods with non-uniform cross-section. Using appropriate transformations, the
equation of motion of axial vibration of a rod with varying cross-section is reduced to
analytically solvable differential equations whose form depends upon the specific area
variation. Solutions are obtained for a rod with a polynomial area variation and for a
sinusoidal rod. The solutions are obtained in terms of special functions. Simple formulas
to predict the natural frequencies of non-uniform rods with various end conditions are
presented. It is also shown that the governing equation for the problem in hand is the same
as that of wave propagation through ducts with non-uniform cross sections, and therefore
the solutions presented here can be used to investigate such problems.

2. THE EQUATION OF MOTION

The longitudinal motion of a rod with varying cross-section is governed by the
differential equation [9]

(1/1x)[EA(x)1u/1x]= rA(x)12u/1t2. (1)

Assuming a solution of the form u(x, t)=U(x) eivt, equation (1) reduces to the second
order ordinary differential equation for the complex amplitude U(x):

d2U/dx2 + (1/A)(dA/dx)(dU/dx)+ r(v2/E)U=0. (2)

Equation (2) has variable coefficients. Therefore, exact solutions of this equation for a
general area variation A(x) cannot be obtained. However, for certain specific area
variations, exact solutions can be obtained. Exact solutions for uniform, conical,
exponential and catenoidal rods are available in the literature [8]. In the following sections,
using appropriate transformations, equation (2) will be reduced to analytically solvable
differential equations for: (1) A(x)= (ax+ b)n (polynomial variation) and (2)
A(x)=A0 sin2 (ax+ b).

3. SOLUTION FOR POLYNOMIAL AREA VARIATIONS

In order to obtain an exact solution, equation (2) is rewritten with A(x) as the
independent variable [10, 11], yielding

(dA/dx)2(d2U/dA2)+ (1/A)(d/dx)[A dA/dx](dU/dA)+ (rv2/E)U=0. (3)

The above equation is solved for a rod with a cross-section area variation that is given
by the following expression.

A=(ax+ b)n, (4)

where n need not be an integer. Noting that

dA/dx= an(ax+ b)n−1 and (dA/dx)(A[dA/dx])= a2n(2n−1)(ax+ b)2n−2, (5, 6)

equation (3) can be re-written as

d2U/dA2 + ((2n−1)n)(1/A)/(dU/dA)+ (rv2/Ea2n2)(1/A2−2/n)U=0. (7)

To simplify equation (7), the following variables w and z which replace U and A
respectively are introduced:

U=wAa, z= lAs, (8, 9)
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where

a= 1
2 (1/n−1), l=(v/a)zr/E and s=1/n. (10)

Transforming equation (7) from the U–A space to the w–z space yields the ordinary
differential equation

d2w/dz2 + (1/z) (dw/dz)+ (1− v2/z2)w=0, (11)

where n is given by

v=(1− n)/2, (12)

w= c1 Jv (z)+ c2 Yv (z) when v is an integer. (13a)

w= c1 Jv (z)+ c2 J−v (z) when v is not an integer. (13b)

Therefore the axial displacement amplitude can be written as

U=Aa[c1 Jv (lAs)+ c2 Yv (lAs)] when v is an integer, (14a)

U=Aa[c1 Jv (lAs)+ c2 J−v (lAs)] when v is not an integer. (14b)

Consider the longitudinal vibration of a rod with its cross-sectional area varying
according to the equation A(x)= ax+ b, equation (3) reduces to

12U/1A2 + (1/A) (1U/1A)+ (rv2/Ea2)U=0, (15)

which is the Bessel’s equation of the zeroth order, whose solution is given by [12, 13]

U= c1 J0 ([b/a]A)+ c2 Y0 ([b/a]A), (16)

where b=vzr/E.
For the case of A=(ax+ b)2 the solution is

U=(1/A1/4) [c1 J1/2 ([b/a]A1/2)+ c2 J−1/2 ([b/a]A1/2)]. (17)

This case was previously solved by Abrate [7]. Using the relation [13]

J1/2 (z)=z2/pz sin z, (18)

it can easily be shown that for the case of n=2, the solution given by equation (17) can
be re-written in the form given by Abrate [7]:

U=(1/zA) [c1 sin ([b/a]A1/2)+ c2 cos ([b/a]A1/2)] (19)

4. NATURAL FREQUENCIES OF A NON-UNIFORM ROD—A NUMERICAL EXAMPLE

The natural frequencies of a rod with its cross-sectional area varying according to the
equation

A=(ax+ b)4 (20)

is discussed in this section. For a fixed–fixed rod, the boundary conditions are u(0, t)=0
and u(L, t)=0. This yields the set of two homogeneous algebraic equations:

(1/A3/8
0 ) [c1 J−3/8 ([b/a]A1/4

0 )+ c2 J3/8 ([b/a]A1/4
0 )]=0, (21)

(1/A3/8
1 ) [c1 J−3/8 ([b/a]A1/4

1 )+ c2 J3/8 ([b/a]A1/4
1 )]=0, (22)

where

A1 =A(L)= (aL+ b)4 (23)
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T 1

Non-dimensional natural frequencies of fixed–fixed rods with A=(ax+ b)4

a
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode 0 1 2

1 3·141593 3·133487 2·386221
2 6·283185 6·278921 6·272251
3 9·424778 9·421905 9·417264
4 12·566371 12·564210 12·560670
5 15·707963 15·706230 15·703370
6 18·849556 18·848110 18·845270

Since these equations are homogeneous, they are solvable only when their determinant
vanishes, which yields the relationship for the non-dimensional eigenvalue b:

J−3/8 ([b/a]A1/4
0 )J3/8 ([b/a]A1/4

1 )− J3/8 ([b/a]A1/4
0 )J−3/8 ([b/a]A1/4

1 )=0 (24)

Table 1 shows the eigenvalues for uniform rods (a=0) and for tapered rods (fixed–fixed)
with a=1, 2, b=1 and L=1. The natural frequencies are presented in terms of b where
b=vzr/E. For uniform rods, bL= jp, where j is an integer, the mode number. Table 1
indicates that the lowest natural frequencies are affected most by the taper. For higher
modes, the natural frequencies are close to that of a uniform rod. The mode shape is given
by

U= c1 A−3/8$J−3/8 0ba A1/41−$J−3/8 0ba A1/4
0 1>J3/8 0ba A1/4

0 1%J3/8 (bA1/4)% (25)

The mode shape corresponding to the fourth natural frequency is plotted in Figure 1.
One of the features that distinguish the mode shape of the tapered rod from that of a
uniform rod is the evanescent behavior of the mode shape. The amplitude at the antinodes
can be seen to be decreasing from one end to the other end.

Figure 1. Mode shape corresponding to the fourth natural frequency of a fixed–fixed beam with cross-section
area varying as A(x)= (1+ x)4.
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T 2

Non-dimensional natural frequencies of fixed–free rods with A=(ax+ b)4

a
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode 0 1 2

1 1·570796 – –
2 4·712389 4·487482 4·404069
3 7·853982 7·721747 7·672932
4 10·995574 10·901630 10·866970
5 14·137167 14·064260 14·037360
6 17·278760 17·219170 17·197190

For fixed–free rods, the boundary conditions are u(0, t)=0 and (1u/1x) (L, t)=0
which results in the transcendental equation for the eigenfrequency.

J−3/8 0b A1/4
0

a 1$ −3
aL+ b

J3/8 0b A1/4
1

a 1− b
A1/4

0

a
J11/8 0b A1/4

1

a 1+ b
A1/4

0

a
J−5/8 0b A1/4

1

a 1%
−J3/8 0b A1/4

0

a 1$ −3
aL+ b

J−3/8 0b A1/4
1

a 1− b
A1/4

0

a
J5/8 0b A1/4

1

a 1
+ b

A/4
0

a
J−11/8 0b A1/4

1

a 1%=0. (26)

Table 2 shows the eigenvalues for uniform rods (a=0) and for tapered rods (fixed–free)
with a=1, 2 b=1 and L=1. For uniform rods, bL= 1

2 (2j−1)p, where j is an integer,
the mode number. Table 2 indicates that, for fixed–free rods, the lowest natural frequencies
are affected most by the taper. For higher modes, the natural frequencies are close to that
of a uniform rod. It is also interesting to note that taper reduces the natural frequency,
and the first mode disappears. (The first mode is present until a=0·97).

For free–free rods, the boundary conditions are (1u/1x) (0, t)=0 and (1u/1x) (L, t)=0
which results in the transcendental equation for eigenfrequency

PS−QR=0,

where

P= −
3
b

J−3/8 0b A1/4
0

a 1−J5/8 0b A1/4
0

a 1b A1/4
0

a
+J−11/8 0b A1/4

0

a 1b A1/4
0

a
,

Q=−
3

aL+ b
J−3/8 0b A1/4

1

a 1−J5/8 0b A1/4
1

a 1b A1/4
0

a
+J−11/8 0b A1/4

1

a 1b A1/4
0

a
,

R=−
3
b

J3/8 0b A1/4
0

a 1−J11/8 0b A1/4
0

a 1b A1/4
0

a
+J−5/8 0b A1/4

0

a 1b A1/4
0

a
,

S=−
3

aL+ b
J3/8 0b A1/4

1

a 1−J11/8 0b A1/4
1

a 1b A1/4
0

a
+J−5/8 0b A1/4

1

a 1b A1/4
0

a
. (27)
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Table 3 shows the eigenvalues for uniform rods (a=0) and for tapered rods (free–free)
with a=1, 2, b=1 and L=1. For uniform rods, bL= jp, where j is an integer, the mode
number. Table 3 indicates that, like the cases of fixed–fixed and fixed–free rods, the lowest
natural frequencies are affected most by the taper. For higher modes, the natural
frequencies are close to that of a uniform rod.

These observations about the natural frequencies are consistent with the observations
of Abrate [7].

3. SOLUTION FOR AREA VARIATION OF THE FORM A=A0 sin2 (ax+ b)

In this section the exact solution for the longitudinal vibration of a rod with an area
variation of the form

A=A0 sin2 (ax+ b) (28)

is derived. To simplify equation (2) a new variable y is introduced:

y=U sin (ax+ b). (29)

Transforming equation (2) from the U–x space to y–x space yields

d2y/dx2 + [rv2/E+ a2]y=0 (30)

whose solution is given by

y= c1 sin kx+ c2 cos kx (31)

where

k2 = rv2/E+ a2 (32)

Therefore,

U=[1/sin (ax+ b)] [c1 sin kx+ c2 cos kx] (33)

It can also be seen that the above equation can be re-written using equation (18) as

U=[zx/sin (ax+ b)] [c1 J1/2 (kx)+ c1 J−1/2 (kx)]. (34)

For a fixed–fixed rod, the boundary conditions are u(0, t)=0 and u(L, t)=0. Therefore
the natural frequencies of the rod are given by kL= jp, where k is given by equation (31),
and m the mode number. Table 4 shows the non-dimensional eigenvalues (bL=vzr/E)
for uniform rods (a=0) and for tapered rods with a=1, 2, b=1 and L=1.

T 3

Non-dimensional natural frequencies of free–free rods with A=(ax+ b)4

a
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode 0 1 2

1 3·141593 3·378458 3·286891
2 6·283185 6·425906 6·614998
3 9·424778 9·524152 9·671519
4 12·566371 12·642120 12·759890
5 15·707963 15·769030 15·866250
6 18·849556 18·900660 18·983120
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T 4

Non-dimensional natural frequencies of fixed–fixed rods with A=A0 sin2 (ax+ b)

a
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode 0 1 2

1 3·141593 2·978189 2·422727
2 6·283185 6·203097 5·956376
3 9·424778 9·371576 9·210127
4 12·566371 12·526519 12·406195
5 15·707963 15·676100 15·580119
6 18·849556 18·823011 18·743152

In this case the mode shape is given by

Uj (x)= c1
sin kj x

sin (ax+ b)
. (35)

For fixed–free rods, the boundary conditions are u(0, t)=0 and (1u/1x) (L, t)=0
which give the following transcendental equation for the eigenfrequency.

[a/tan (aL+ b)] tan kL= k. (36)

Table 5 shows the eigenvalues for uniform rods (a=0) and for tapered rods with a=1,
2, b=1 and L=1.

For free–free rods, the boundary conditions are (1u/1x) (0, t)=0 and (1u/1x) (L, t)=0
which results in the transcendental equation for eigenfrequency:

tan kl=[a− a sin b/sin (aL+ b)]/[k sin b+ a2/sin (aL+ b).] (37)

Table 6 shows the eigenvalues for uniform rods (a=0) and for tapered rods with a=1,
2, b=1 and L=1.

In all the three cases, it can be seen that the lowest natural frequencies are affected most
by taper. For higher modes, the natural frequencies are close to that of a uniform rod.

4. DISCUSSION

The authors have been able to obtain the solution to the problem for the case of a
polynomial area variation, by transforming the differential equation such that the area A

T 5

Non-dimensional natural frequencies of fixed–free rods with A=A0 sin2 (ax+ b)

a
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode 0 1 2

1 1·570796 1·517638 2·148560
2 4·712389 4·702145 5·535762
3 7·853982 7·848311 8·632812
4 10·995574 10·991620 11·694640
5 14·137167 14·134120 14·757860
6 17·278760 17·276280 17·830600
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T 6

Non-dimensional natural frequencies of free–free rods with A=A0 sin2 (ax+ b)

a
ZXXXXXXXXXXXCXXXXXXXXXXXV

Mode 0 1 2

1 3·141593 3·0004297 1·5808147
2 6·283185 6·216901 5·113309
3 9·424778 9·380888 8·436760
4 12·566371 12·533530 11·721540
5 15·707963 15·681720 14·977670
6 18·849556 18·827700 18·210650

is the independent variable. The solutions are obtained as direct functions of area. It may
be possible that other problems can be solved by using this approach.

One of the effects of taper on the vibration of non-uniform rods is that the amplitudes
of the antinodes are not constant as it can easily be seen from Figure 1. This evanescent
nature of the mode shape is reflected in the properties of Bessel functions [14]. The
solutions presented in this paper are obtained in the form of Bessel functions. The solution
developed earlier by Abrate [7] for a conical rod can also be expressed in the form of Bessel
functions as is shown in equation (17). Therefore, it is speculated that for approximate
techniques used for solving this problem, Bessel functions may be a better approximation
for mode shapes than trigonometric functions.

The problem discussed in this paper is mathematically similar to the problem of sound
propagation through ducts of varying cross-section, whose one-dimensional wave equation
for simple harmonic time dependence is given by [15]

12p/1x2 + [1/A(x)] (dA(x)/dx) (dp/dx)+ k2p=0,

where p is the acoustic pressure amplitude, A(x), the cross-section area, and k, the wave
number. It can be seen that this equation is the same as equation (2). Therefore solutions
developed for one problem can be used for the other.

5. CONCLUSIONS

Exact analytical solutions describing the longitudinal vibration of rods were obtained
by transforming the equation of motion to standard differential equations which are
analytically solvable in terms of special functions. Solutions are obtained for a rod with
a polynomial area variation and for a sinusoidal rod. The solutions are obtained in terms
of special functions such as Bessel and Neumann as well as trigonometric functions. Simple
formulas to predict the natural frequencies of non-uniform beams with various end
conditions are presented. It is shown that the lowest natural frequencies are affected most
by the taper. For higher modes, the natural frequencies are close to that of a uniform rod.
The mode shapes differ significantly from that of uniform rods. The mode shapes display
an evanescent nature and this feature is easily captured by the Bessel functions. Therefore,
it is speculated that for approximate techniques used for solving this problem, Bessel
functions might be a better approximation for mode shapes than trigonometric functions.

The expressions obtained in this analysis are in terms of Bessel and trigonometric
functions and are easy to evaluate. These closed form expressions presented herein can be
used also as benchmarks for checking the results obtained from numerical or approximate
methods. The governing equation for the problem is the same as that of wave propagation
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through ducts with non-uniform cross sections. Therefore solutions presented here can be
used to investigate such problems.
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APPENDIX: NOMENCLATURE

a, b constant in equation (4) w transformation variable in
A area equation (8)
E Young’s Modulus x distance
k wave number in equation (32) y transformation variable in
Jv Bessel function of order v equation (29)
j mode number (integer) Yv Neumann function of order v
L length of the rod z transformation variable in
n constant in equation (4) equation (9)
P, Q, R, S variables in equation (27) a, l, s transformation variables in

equation (10)t time
u displacement b non-dimensional frequency
U displacement amplitude r mass per unit volume of the rod


